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When entering university students often find there is a shift in presentation of mathematical
ideas, from a primarily procedural or algorithmic school approach to a presentation of
concepts through definitions and deductive derivation of other results. For many a course
in linear algebra is the first occasion that this shift is encountered, since calculus may
approximate to what they have seen at school. This research uses the theory of processes
and objects, along with the ideas of embodied or visual, symbolic and formal approaches
to mathematics learning to investigate some first year students’ understanding of
eigenvalues and eigenvectors. We identify some fundamental problems with student
understanding of, and hence working with, the definition of eigenvector, as well as with
some of the concepts underlying it.

Introduction

For many university students one of their first introductions to the formal presentation
of mathematics is a course in linear algebra. Instead of comprising primarily manipulation
of symbols in order to solve problems, the focus moves to presentations of concepts, and
derivation of further concepts from these. The concepts may be presented through a
definition in natural language, which may have embedded symbolism, or be linked to a
symbolic presentation. These definitions are considered to be fundamental as a starting
point for concept formation and deductive reasoning in advanced mathematics (Vinner,
1991; Zaslavsky & Shir, 2005). Eigenvectors form a good example of how a word definition
may be immediately linked to a symbolic presentation, xAx = . The definition often used
is a version of:

A non-zero vector x is called an eigenvector of a square matrix A if and only if there exists a scalar
 such that Ax = x .

However, eigenvectors have a strong visual, or embodied metaphorical, image in the
vector space Rn, which is sometimes hidden from students by the strength of this formal
and symbolic emphasis. A developing theory by Tall (2004a, b), extending some of the
action, process, object, schema (APOS) ideas of Dubinsky (Dubinsky, 1991; Dubinsky, &
McDonald, 2001), proposes that learners of mathematics can benefit from experiencing the
results of actions in an embodied world, and processes in a symbolic world (or stages),
before being able to live in the world of formal mathematics. This theoretical position
suggests that it would assist university students if they were presented with embodied
aspects of concepts, and associated actions, wherever possible. Extending his idea of an
embodied manner of learning about differential equations (DE’s) (Tall, 1998) in which an
enactive approach builds an embodied notion of the solution to a DE before introducing
algebraic notions, Tall (Tall, 2004a, b) has recently developed these ideas into the
beginnings of a theory of the cognitive development of mathematical concepts. He
describes learning taking place in three worlds: the embodied; the symbolic; and the formal.
The embodied is where we make use of physical attributes of concepts, combined with our
sensual experiences to build mental conceptions. The symbolic world is where the
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symbolic representations of concepts are acted upon, or manipulated, where it is possible
to “switch effortlessly from processes to do mathematics, to concepts to think about.”
(Tall, 2004a, p. 30). Movement from the embodied world to the symbolic changes the
focus of learning from changes in physical meaning to the properties of the symbols and
the relationships between them. The formal world is where properties of objects are
formalized as axioms, and learning comprises the building and proving of theorems by
logical deduction from the axioms. After eigenvalues and eigenvectors are introduced to
students through the formal concept definitions, they are soon into manipulations of
algebraic and matrix representations, e.g. transforming Ax = x to A I( )x = 0, and

solving this using matrices. In this way the strong visual, or embodied metaphorical, image
of eigenvectors is obscured by the strength of this formal and symbolic emphasis.
However, presenting an embodied approach before recourse to matrix procedures might
give a feeling for what eigenvalues, and their associated eigenvectors are, and how they
relate to the algebraic and matrix representations.

Such multiple representations of concepts are important since students require an
ability to establish meaningful links between representational forms, referred to as
representational fluency (Lesh, 1999). This notion forms part of representational versatility

(Thomas & Hong, 2001; Thomas, in press), which includes a) addressing the links between
representations of the same concept, b) the need for both conceptual and procedural
interactions with any given representation, and c) the power of visualization in the use of
representations. Such understanding is so important that it has been suggested that ‘a
central goal’ of mathematics education should be to increase the power of students’
representations (Greer & Harel, 1998, p. 22). In terms of curriculum, Moshkovitch,
Schoenfeld and Arcavi (1993, p. 97) suggest that we should ask “Does any curriculum we
propose make adequate connections across representations and perspectives? If not it had
better be revised”. One reason for this strong emphasis is that, according to Lesh (2000, p.
74), the idea of representational fluency is “at the heart of what it means to ‘understand’
many of the more important underlying mathematical constructs”. In linear algebra too it
has been recognised by Hillel (2000) and Sierpinska (2000) that conceptual difficulties are
often linked to its three kinds of description or representation: the general theory; the
specific theory of Rn and the geometry of n-space. Forming the links between these
abstract, algebraic and geometric levels or representations is what is at the basis of many
student problems and there is a need to make explicit links between them.

In this paper we use some of these ideas to analyse the way that students think about
eigenvector and eigenvalue concepts, and how they cope with some cognitive obstacles. We
describe how some second year university students, following a course that has little in the
way of a visual component, were engaged in describing their understanding of eigenvectors,
using a test containing a concept map. The results describe the understanding the students
displayed, and the state of emerging links forming between parts of students’ concept
images of eigenvalue and eigenvector from the three worlds.

Method

This research comprised a case study of second year university students’
understanding of the concept of eigenvalues and eigenvectors, and was carried out at the
University of Auckland early in 2006. There were 42 from the total of 260 students in the
Maths 208 course who volunteered to participated in this study by sitting a linear algebra
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test on the concept of eigenvalues and eigenvectors. The test was designed to examine
students’ geometric, matrix and algebraic understanding rather than procedural abilities. The
Maths 208 course is one of the prerequisites for commerce and economics students, and is
a recommended course for students with a less strong mathematics background. The course
includes both advanced linear algebra and calculus, but uses a different approach from the
mathematics major courses. Thus, although the course manual is filled with formal
definitions and theory, and many references to Anton and Busby’s (2003) “Contemporary
linear algebra” textbook, it is designed in such a way that students are able to pass the
course simply by knowing the routine processes, and not necessarily understanding the
theory. This year, unlike previous ones, the course started with linear algebra since many
students had tended to drop out of the course early on when they found sequences and
series too difficult.

1. Define the notion of eigenvalues and eigenvectors in your own words.

2. Can 3

4
 and 3

4
 both be eigenvectors for a given matrix? Explain your answer.

3. Concepts maps are often a good way of learning
about a new concept. Here is a concept map for
the derivative of a function. Draw one below for
eigenvectors and eigenvalues.

4. If A is a 2 by 2 matrix, explain why the picture
below is not possible.

5. If Ax = x put in all the necessary steps in order to show that
(A– I) x = 0.

6.  (a) What do these all have in common? Explain.

1 2

2 1

1

1
=

1

1

1 2

2 1

1

1
=

3

3

2 0

0 2

4

3
=

8

6

 (b) Fill in values a,b,c,d that do not follow the above pattern. 
1 2

2 1

a

b
=

c

d
Some formatting changed.

Figure 1. The test questions.

Results

The section on eigenvectors and eigenvalues in the Maths 208 coursebook does not
contain a single diagram, and thus totally ignores the embodied aspects of learning this
topic. Question 4 was designed to see if the students had abstracted and assimilated to their
eigenvector schema the geometric idea that when an eigenvector is multiplied by the
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transformation matrix it ends up in the same direction (but not necessarily the same sense).
A 2x2 matrix can not have three independent vectors all with this property since it can
only have at most two eigenvalues. To answer the question students had to see
geometrically that each of the three vectors satisfied the eigenvector definition, link this to
the data from the matrix size, and use this inter-representational reasoning to see there is a
contradiction.

Of the 42 students 14 were unable to answer the question at all, and only 6 gave a
correct explanation of why the diagram was not possible. These included student E, who
wrote “The picture above implies A has 3 eigenvectors of different directions (but if A is
2x2, it has a maximum of 2 eigenvectors of different directions.)”, student F who said “If A
is 2x2 matrix, it can have maximum of 2 linearly independent vectors in its basis. Therefore
one of Aw, Au and Av must be impossible.” and student V “Diagram shows 3
eigenvalues/eigenvectors a 2x2 matrix should have only 2.” Others (brackets contain the
student letter) were unable to relate the picture to the concept of eigenvector, and instead a
number seemed to relate it to the basis for a space, which may have been the place where
they had seen a similar diagram. They wrote comments such as “Since there are only 3
vectors it will generate a space.” (Q), “because you don’t need that many vectors to span
the plane” (U), “Maybe too many dimensions?” (AC), “  linearly dependent” (AE) and
“It’s got way to [sic] many vectors in it.” (AD). Some appeared confused and wrote, for
example “The picture shows scalar multiplication which should not occur in a 2x2 matrix.”
(L), “Because w is in a different direction.” (W) and “because the vectors are on different
planes.” (X).

We asked question 2 in order to see if the students’ understanding of eigenvectors was
limited to the algebraic and matrix (vector) representations or whether they used embodied,
visual explanations in their answers. Of the 42 students, 14 correctly answered the
question, and 4 could not write anything. However, of those who were correct 13 used
only an algebraic or matrix procedural explanation, often involving multiples, such as “Yes

3

4

( 1)
=

3

4
” (T) “Yes they are merely a factor of –1 of each other” (A), “Yes, since

the eigenvalues are –1 and 1” (Q) and “Yes. Eigenvectors of a given eigenvalue is any
multiple of any given eigenvector.” (E). Only very occasionally was a geometric comment

made “Yes as 
3

4
&

3

4
 are multiples of each other in the opposite directions” (C). Some

confusion again showed through with 7 students commenting on eigenvectors having to be
independent “No, because there is a linear relationship between them.” (K) and “No,
eigenvectors of a matrix should be linearly independent.” (L). This does not mean that the
students answering in a non-geometric manner were not able to think geometrically.
However, it does imply that this mode of thinking is definitely not at the forefront of their
approach when the question is presented in a matrix format.

This lack of a link to a geometric perspective was certainly confirmed by the
definitions in question 1 and the concept maps drawn in question 3. The first question
asked students to relate their understanding of the formal definition, but without repeating
it. Of the question 1 responses 16 did not write anything (or wrote ‘no idea’), 17 gave a
procedural response based on the equation Ax = x  or ‘multiples’ of a vector, and only
two made any mention of geometric idea, either correctly stating that “A matrix ‘A’ when
multiplied by a vector ‘v’, the resulting vector has the same direction as the original vector
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‘v’.”(E) or wrongly saying that they “generate a plane” (T). In addition there was one
vaguely conceptual answer and 6 that we were unable to categorise. In question 3 not a
single student put anything even remotely linked to geometry in their concept map for
eigenvector and eigenvalue. 18 of the students did not draw anything at all, and of the
remainder 21 drew a procedural map and 3 a conceptual one, with few, or no, action verbs.
Figure 2 gives a typical example of the procedural concept maps, and one of the rarer
concept ones. Student E sees the solving process as the only relevant detail, while student
G presents only concepts, including a link to one from another part of the course.

Student E Student G
Figure 2. Procedural and conceptual concept maps.

Question 5 was aimed at a possible serious process/object related problem for students
with Ax = x , namely that the two sides of the equation are quite different processes, but
have to be encapsulated to give equivalent mathematical objects, as pointed out by Stewart
and Thomas (2006). In this case the left hand side is the process of multiplying (on the
left) a vector (or matrix) by a matrix, while the right hand side is the process of multiplying
a vector by a scalar. Yet in each case the final object is the same vector. We wondered if
this process/object tension in the equation has an effect on student understanding of what
is a crucial part of the definition of an eigenvector. Moreover, we noticed that the
coursebook for Maths 208 glossed over the steps required to go from Ax = x  to
A I( )x = 0. Figure 3 shows a section of the coursebook where this is presented. On the

surface there seems a subtle change of object from a scalar  to a matrix I, but the nature
of I is not discussed. Beneath we see the corresponding section from the textbook, and here
a small step is inserted, showing Ax = Ix, but it is not emphasised that it is (Ix). This has
the effect of changing the process on the right hand side to one very similar to that on the
left, namely multiplication of a vector (or matrix) by a matrix (and then by a scalar
afterwards).



492

Figure 3. The coursebook and textbook explanations of the move from Ax = x  to A I( )x = 0.

We wanted to know how the student perspective on this equation-changing would
influence their ability to perform the task, and hence the question. In the event it proved to
be quite revealing. It was clear that 13 of the students did not understand what the I was,
where it came from, and why it was there. We see in Figure 4 that this affected their ability
to complete the relatively simple three-line transformation of the equations. These three
students, A, K and S, either ignore the identity matrix or simply insert it in the final line.

Student S Student A
Student K

Figure 4. Working of students A, K and S on question 5.

Some evidence of what was causing the difficulty was found in the explanations of
other students. Figure 5 shows the work of four more students, C, J, L and P. Here
students C and J are finding it difficult to explain why the  seems to become I. Student J
tries to explain, with little understanding, that “E[igen]-values must have Identity matrix,
otherwise can not be expressed.” and hence the I has to be inserted. However, students L
and P have both decided that A –  cannot be accomplished (“can’t work”) since they are
of different types—“A is a matrix is a number”—and so it is necessary to “multiply [ ]

by the identity matrix” as a solution, and P almost correctly performs this. On the other
hand, student C is clearly struggling with the idea that the order of x will not be the same
as that of A, but is happier that I is also an nxn matrix. To overcome the difficulty he has
focussed on the input objects on each side of the equation that are operated on, rather than
the object produced by the process, and the processes are still causing cognitive conflict.
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Student J Student C

Student L
Student P

Figure 5. Working of students C, J, L and P on question 5.

There were 5 students who either performed an operation that they were used to and
understood, namely multiplying the equation through by I (and assuming associativity) or
replaced x by Ix. Both x’s were replaced immediately by student B, but student Q, like P,
multiplied by I only when there was clearly a problem with the A–  (see Figure 6), and
may not have fully understood. On the other hand, student E chose to follow the textbook,
and replaced x by Ix.

Student E
Student Q Student B

Figure 6. Successful working from students B, E and Q on question 5.

Question 6 considered whether students could recognise the equation Ax = x  in the
matrix representation, and interpret it accordingly. 23 of the students correctly linked
across the representations, stating, for example, that “All the vectors are eigenvectors.”
(A), “They all have eigenvalues & eigenvector” (M) “All results are multiples of x (i.e. x is
an eigenvector)” (V). A further 8 could see that the resulting vector was a multiple of the
original, but did not link this to eigenvectors. 7 students did not answer the question and 4
wrote an incorrect answer. This evidence suggests that students were much better at linking
the two representations in the symbolic world than they were for the geometric.
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Conclusion

It seems that our data show two things that are important for the teaching of
eigenvectors and eigenvalues in linear algebra. Firstly, while they seem reasonably confident
with the algebraic and matrix procedures, and were able to relate versions of the equation
Ax = x  between them, the vast majority of our students had no geometric view of
eigenvectors or eigenvalues, and could not reason on the relationship between a diagram and
eigenvectors, to their detriment. This is not surprising since the coursebook did not present
such a view, and it appears that the lecturers did not do so either. However, since embodied
notions of mathematics are regularly employed at all levels of mathematical thinking it is
something that should be put in place. This is in agreement with the suggestion of Harel
(2000), who, while cautioning that some students persist in seeing a geometric object as the
actual mathematical object and not as a representation of it, maintains that "In elementary
linear algebra, there should be one world–Rn–at least during the early period of the course."
(p. 185). Secondly, the progression, working within the algebraic symbolic world, from
Ax = x  to A I( )x = 0  is not perceived as straightforward by many students. We

maintain that they are troubled by the two different processes in the first equation, and do
not know what identity the I refers to. The textbook and coursebook tend to move the
focus of attention to I  rather than Ix . Since students often seem to lack the understanding
of how the second equation is obtained from the first, the implication is that this needs to
be made explicit in teaching. It should be explained that the identity being used in the
process is an nxn matrix, and it is the x that is being multiplied by this identity. This will
also solve the process problem with the first equation, if it’s done immediately.

References

Anton, H. & Busby, R. C. (2003). Contemporary linear algebra, Wiley.

Dubinsky, E. & McDonald, M. (2001). APOS: A constructivist theory of learning. In D. Holton (Ed.) The
Teaching and Learning of Mathematics at University Level: An ICMI Study (pp. 275–282). Dordrecht:
Kluwer Academic Publishers.

Dubinsky, E. (1991). Reflective abstraction in advanced mathematical thinking. In D. O. Tall (Ed.),
Advanced Mathematical Thinking (pp. 95–123). Dordrecht: Kluwer Academic Publishers.

Greer, B. & Harel, G. (1998). The role of isomorphisms in mathematical cognition. Journal of
Mathematical Behavior, 17(1), 5–24.

Harel, G. (2000). Three principles of learning and teaching mathematics, In J.-L. Dorier (Ed.) The Teaching
of Linear Algebra in Question (pp. 177–189), Dordrecht, Netherlands: Kluwer Academic Publishers.

Hillel, J. (2000). Modes of description and the problem of representation in linear algebra, In J.-L. Dorier
(Ed.) The Teaching of Linear Algebra in Question (pp. 191–207), Dordrecht, Netherlands: Kluwer
Academic Publishers.

Lesh, R. (1999). The development of representational abilities in middle school mathematics. In I. E. Sigel
(Ed.), Development of Mental Representation: Theories and Application (pp. 323-350). Hillsdale, NJ:
Lawrence Erlbaum Associates, Publishers.

Lesh, R. (2000). What mathematical abilities are most needed for success beyond school in a technology
based age of information?, In M. O. J. Thomas (Ed.) Proceedings of TIME 2000 an International
Conference on Technology in Mathematics Education, (pp. 72–82). Auckland: Auckland University.

Moschkovich, J, Schoenfeld, A. H., & Arcavi, A. (1993). Aspects of understanding: On multiple
perspectives and representations of linear relations and connections among them, In T. A Romberg, E.
Fennema, & T. P. Carpenter (Eds.), Integrating research on the graphical representations of functions
(pp. 69–100), Hillsdale, N J: Lawrence Erlbaum Associates.

Sfard, A. (1991). On the dual nature of mathematical conceptions: Reflections on processes and objects as
different sides of the same coin. Educational Studies in Mathematics, 22, 1–36.

Sierpinska, A. (2000). On some aspects of students’ thinking in linear algebra, In J.-L. Dorier (Ed.) The



495

Teaching of Linear Algebra in Question (pp. 209–246), Dordrecht, Netherlands: Kluwer Academic
Publishers.

Stewart, S. & Thomas, M. O. J. (2006). Process-object difficulties in linear algebra: Eigenvalues and
eigenvectors. Proceedings of the 30

th
 conference of the International Group for the Psychology of

Mathematics Education, Prague, Czech Republic (in print).

Tall, D. O. (1998). Information Technology and Mathematics Education: Enthusiasms, Possibilities &
Realities. In C. Alsina, J. M. Alvarez, M. Niss, A. Perez, L. Rico, A. Sfard (Eds.), Proceedings of the
8th International Congress on Mathematical Education (pp. 65–82). Seville: SAEM Thales.

Tall, D. O. (2004a). Building theories: The three worlds of mathematics. For the Learning of Mathematics,
24(1), 29–32.

Tall, D. O. (2004b). Thinking through three worlds of mathematics. Proceedings of the 28
th
 Conference of

the International Group for the Psychology of Mathematics, Bergen, Norway, 4, 281–288.

Thomas, M. O. J. (in print). Conceptual representations and versatile mathematical thinking. Proceedings of
ICME-10, Copenhagen, Denmark.

Vinner, S. (1991). The role of definitions in the teaching and learning of mathematics. In D. O. Tall (Ed.),
Advanced mathematical thinking (pp. 65–81). Dordrecht, The Netherlands: Kluwer Academic
Publishers.

Zaslavsky, O. & Shir, K. (2005). Students’ conceptions of a mathematical definition. Journal for Research
in Mathematics Education, 36(4), 317–346.


